
www.jmeds.eu

119

An Adaptive Authorization Model Based on RBAC

 Radu Constantinescu, Lucian Corlan

AES, Business Informatics Dept, ROMANIA

UTI Group, R&D Dept, ROMANIA

radu.constantinescu@ie.ase.ro,lcorlan@gmail.com

Abstract: In the article we present a data model and a possible implementation suited to allow proper access
control in a system. In order to do that, we started from the extended RBAC model which is focused on roles
which are associated to different functions existing in the system. The access control is implemented not just for
some application’s functionalities but also for granulated data details, like data attributes.

Keywords: authorization, access control models, roles, security, RBAC

1. Introduction

In the area of access control mechanisms, there are two well known classical models:

Mandatory Access Control – MAC and Discretionary Access Control –DAC. DAC is defined

in TCSEC as “a means of restricting access to objects based on the identity of the

subjects and groups to which they belong”. [12] The model is called discretionary

because it is possible for a subject to pass a subset of his permissions, even if not

directly, to any other subject. On the other hand MAC is defined in TCSEC as “a means of

restricting access to objects based on the sensitivity of the information contained in the

objects and the formal authorization of subjects to access information of such

sensitivity”. [12] The sensitivity of the information is represented by labels and the

formal authorization is also known as clearance. Those two models were for a long

period of time considered to be the only patterns for access control models for till Role

Based Access Control – RBAC was proposed and documented. Studies have

demonstrated that RBAC is neither MAC nor DAC even if there are similar aspects that

the model shares with both of them.

The RBAC model is focused on roles which are associated to different functions existing

in systems or in organizations. The roles are associated to users depending on their

responsibilities and/or qualification. Roles are also associated with permissions. The

association of users and roles tends to change faster than the association between roles

and permissions as the organizational frameworks tends to modify slower than the way

in which users are allocated to tasks.

RBAC is also used as a foundation for complex access control mechanisms. RBAC is

appropriate to be used in organizations that focus more on integrity than on

confidentiality, so it is suitable for economical applications. It implements role

hierarchies and constraints. The conceptual model is layered. The first layer is RBAC0

which is the base model. On top of it are two independent layers RBAC1 and RBAC2 which

are concerned with role hierarchies and respectively constrains. RBAC3 consolidates both

RBAC1 and RBAC2. On top of RBAC3, security architects can define and implement

customized levels for specific activities. [1]

2. Model Description

Journal of Mobile, Embedded and Distributed Systems, vol. I, no. 2, 2009

ISSN 2067 – 4074

120

The main components of RBAC model are: users (U), roles (R), permissions (P) and

sessions (S). A user can be defined as a human being but in automated systems it also

can represent an entity. Roles are job functions related to the organizations’ or systems’

particularities. A role implies, as we already mentioned, competency, responsibility and

authority. Permissions are related to the specific functions inside organizations. A role

can be assigned to one-to-many persons and also one person can have one-to-many

roles. This is also valid for role-permissions relationship. A session is a mapping between

a user and an activated subset of roles that are assigned to him. [2] In the basic model

the relations defined are:

Permission assignment between permissions and roles: PAP×R

User assignment between users and roles: UAU×R

Session-user mapping: user:SU

Session-roles mapping: roles:S2R, roles(si)  {r| (user(si),r)  UA} which can change

in time and session si has permissions Urroles(si) {p|(p,r) PA}.

Regarding permissions, we distinguish between standard permissions and administrative

permissions. Standard permissions refer to data and resource objects. Administrative

permissions are required to modify the sets of users, roles, permissions and the relations

between them. The administrative permissions are managed in a dual RBAC system.

Sessions are in control of individual users. A user can create sessions and can choose to

activate a subset of possible roles and then he can modify the active roles and even

close the session.

RBAC1 model introduces the role hierarchy concept. [7] This is used to structure the

roles in order to reflect organizations’ patterns. The most important roles stay in the top

of the hierarchy inheriting permissions from the less important roles. This relation is a

partially ordered relationship which means that it is reflexive, transitive and anti-

symmetrical. In consequence, a role inherits its own permissions and the permissions of

lower roles connected directly or indirectly with it and the bidirectional inheritance is

denied in order to exclude redundancy. Therefore, RBAC1 introduces a new relation:

RHR×R, and the function roles is modified accordingly: roles(si)  {r| (r’ ≥

r)[(user(si),r’)  UA} and session si has the permissions Urroles(si) {p| (r’’  r) (p,r’’)

PA}.

There are many common cases in which is desired that some permission should remain

available only to specific roles and to avoid inheritance to superior levels. This issue can

be solved by defining private roles that are not inherited. This is represented in Figure 1.

In the first graph is represented a role hierarchy that contains the roles T, T0, T1, T2, T3,

T4, S1 and S. The role T is the base role for this example and is inherited by all the other

roles. Role S is the top role. S1 is a subproject role. In case there are permissions for S1

that shouldn’t be inherited by S, then the whole subproject area of the graph is

replicated using private roles as in the second picture of Figure 1. [13]

T1 T2

S1

T0

T

T4

T3

S

www.jmeds.eu

121

T1 T2

S1

T0

T

T4

T3

S

T0

T’2

T’1

S’1

Fig. 1. Standard role hierarchy and private role hierarchy

RBAC2 model introduces the concept of constrains which are mandatory for any

organization. In the category of constrains we can mention the mutual exclusion of roles,

cardinality restrictions or the prerequisite roles constraint. The restrictions should be

simple in order to be easily implemented in an efficient way. Restrictions can be related

to sessions and to the roles() and user() functions. Even though the role hierarchy is

also a constraint, given its importance, it is discussed in the context of a different layer –

RBAC1. [3]

The consolidated model combines RBAC1 and RBAC2. There are some problems that arise

from this association. The constraints in RBAC2 could limit the number of superior or

inferior roles that a role can have. There are also situations in which the inheritance

could violate restrictions like mutual exclusion between roles. This issue can be

addressed using private roles, as in Figure 1.

3. Formal Model

Given the variables of the model that were already discussed in the article, we will

present the formal description of the basic properties of RBAC model. The properties are

known in literature as: consistent subject, role assignment, role authorization, privilege

authorization and role hierarchy. [4]

The consistent subject property states that for any subject s associated with user u, the

authorized role set R[s] includes role r if and only if u is authorized for r:

         sRrrMuusUrus  ,| (1)

Where
 rM

 represents the set of users authorized for role r and
 sR

 is the set of roles

for which subject s is authorized.

The role assignment property states that a subject can execute a privilege only if the

subject is assigned a role that is active at that moment:

        sARpsXps ,|
(2)

Where
 psX ,

 is the true if and only if subject s is able to execute permission p and

 sAR
 is the set of active roles for s.

The role authorization property states that a subject’s active role must be in the set of

authorized roles for the subject:

     sRrsARrs  |
(3)

Journal of Mobile, Embedded and Distributed Systems, vol. I, no. 2, 2009

ISSN 2067 – 4074

122

The privilege authorization property states that a subject can execute a certain

permission only if the permission is assigned to the active role of the subject:

         rPApsARrpsXrps  ,| (4)

Where
 rPA

 is the set of permissions associated with role r.

The role hierarchy property states that a authorized role includes the permissions of the

roles it inherits.

            sRqqrsRrsARqqrsARrsqr  |, (5)

4. Solution design

We will use the extended RBAC model, developed from the formal model rules presented

in section 4, in order to implement access control in a real application. We’ll present a

mechanism that offers the means to define, manage and verify the access rights of a

user in the system. This means that users will be able to access only the application’s

resources they are authorized to.

The designed mechanism can be used for any type of system which needs authentication

and authorization. More important, the modular characteristic of the solution allows for a

suitable package of the solution to be delivered to a particular system, to meet

performance requirements. As such, we can identify three types of systems:

systems which needs general access control to authorize the usage of certain

functionalities;

systems which require data access control (besides general access control), in which the

access is restricted for some information from the system according to some properties

of the entities and users involved. An example of such a system would be an application

which handles structured documents, with sensitive information, across some workflows.

systems which involves business rules in execution of their procedures and

functionalities, and depending on the context of access control, those business rules are

evaluated and the access is granted according to the result of this evaluation.

We can combine the requirements from these three types of systems to produce any

desired combination. For example, an ERP system will require functionality authorization,

data authorization and business rules driven authorization, in any combination,

depending on the user request to access system resources in some particular context.

Two important principles will be applied:

proactive verification – when an user is authenticated in system, the interface will show

only those resources that he can access according to his roles (area of competence

principle);

reactive verification – when an user accesses a functionality of the application, he will

access only the data he has the right to (necessity to know principle).

From a conceptual point of view, access control takes place at two levels: the

functionalities level and the data level. By functionalities level we understand the

domain specific actions that comprise the application’s business logic. By data level we

refer the data set which a user can access using a functionality of the system in

concordance to his rights, and also to how fine-grained are the rights defined for an

entity. [9], [10], [11]

Data level access control is required because applications use very sensitive data. This is

why proper mechanisms to allow a flexible and fine-grained access must be in place.

In order to design the access control model we will use the following concepts:

Object – is an entity which copes with the business logic of an application and for which

is necessary to give access rights.

www.jmeds.eu

123

Attribute – is a property of an entity, for which the access can be restricted in the

context of a given functionality. In this stage, we distinguish the following levels of

access: editable, readable and hidden. Those levels apply in the context of a user who is

executing some operations that implies the entity. Editable means that the value of that

attribute can be modified, if this is the case, according to the business logic of the

functionality. Readable means that the value of the attribute is read-only, although it

could be modified if the required rights exist. Hidden it means that the attribute will not

be displayed at all.

Instance – represent a concrete representation of an entity at run-time. In special

cases, special rights can be given for an instance, prevailing over other existing rights.

Constraint – is a business logic rule which specifies restrictions over the normal way of

executing a given functionality. In other words, it defines the conditions which must be

fulfilled in order to do that action. Constraints are defined using the entities attributes.

Operation – represents an abstract action in a particular context.

Functionality – represents the know-how required to execute an operation on an entity.

It can be seen as a black box, which for some inputs, makes the necessary processing

and returns an output.

We can represent this model based on a black box model, as in Figure 2.

 Input data Functionality Output data

Fig. 2. Black box model

The access control will be implemented at 3 levels:

1. Input data level: verification of right to execute that functionality for the specific

input data. In this case, it is verified that the constraints are fulfilled for the entered

values.

2. Functionality level: verification of right to execute certain functionality.

3. Output data level: verification of right to access data from the output set of data

obtained after functionality execution. Here will be applied constraints for the output

data.

Those constraints involve attributes like classification, location or document type.

Permission represents the access rights in the system, which can be defined using the

above concepts. The role (profile) – represents a set of permissions which comprise the

necessary rights to execute a certain business logic activity.

5. Data model

We propose the following data model, as depicted in figure 3, which satisfies the

requirements defined above. The relevant attributes for access control are detailed for

each business logic entity. The attributes will be used to define constraints and to specify

fine-grained access rights. Access at instance level can be granted at run-time for

sensitive entities. The constraints for functionalities can be defined also using those

attributes. Certain functionality is defined at designed time using operations and entities.

Journal of Mobile, Embedded and Distributed Systems, vol. I, no. 2, 2009

ISSN 2067 – 4074

124

operation

id_operation
name

description

INTEGER
VARCHAR2(25)

VARCHAR2(50)

<pk>

profile

id_profile
fk_profile

name

description

type

INTEGER
INTEGER

VARCHAR2(25)

VARCHAR2(50)

NUMBER(1)

<pk>
<fk>

user

id_user
fk_ldap

user_login

user_passwd

logged

account_status

account_creation_date

account_deletion_date

serial_number

issuer_name

INTEGER
VARCHAR2(25)

VARCHAR2(25)

VARCHAR2(25)

NUMBER(1)

SMALLINT

DATE

DATE

VARCHAR2(20)

VARCHAR2(100)

<pk>

user_profile

id_user_profile
fk_profile

fk_user

INTEGER
INTEGER

INTEGER

<pk>
<fk1>

<fk2>

entity

id_entity
name

description

INTEGER
VARCHAR2(25)

VARCHAR2(50)

<pk>

functionality

id_functionality
fk_operation

fk_entity

name

description

INTEGER
INTEGER

INTEGER

VARCHAR2(25)

VARCHAR2(50)

<pk>
<fk1>

<fk2>

instance

id_instance
fk_entity

value_instance

name

description

INTEGER
INTEGER

INTEGER

VARCHAR2(25)

VARCHAR2(50)

<pk>
<fk>

attribute

id_attribute
fk_entity

name

description

type

access_type

data_type

INTEGER
INTEGER

VARCHAR2(25)

VARCHAR2(50)

NUMBER

NUMBER

NUMBER

<pk>
<fk>

permission

id_permission
fk_functionality

fk_instance

fk_attribute

fk_constraint

fk_profile

name

description

type

INTEGER
INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

VARCHAR2(25)

VARCHAR2(50)

NUMBER(1)

<pk>
<fk2>

<fk1>

<fk3>

<fk5>

<fk4>

constraint

id_constraint
name

expression_art_bool

description

is_used

INTEGER
VARCHAR2(25)

VARCHAR2(100)

VARCHAR2(100)

NUMBER

<pk>

Fig. 3. Data model diagram

The use of operations is only to ease the administrative task of granting rights. A

primary right is defined as a permission, and a set of permissions can be aggregated into

a profile (role). The profile describes an area of competence

6. Implementation

The implementation of the authorization module based on the conceptual model implies

two important aspects:

 Access validation to specific functionality in terms of Yes or No;

 Access validation to data used by the functionality (input and output).

Access validation for input data determines the execution of certain functionality in

specific conditions on the basis of input data. Access validation for output data means

filtering the data set obtained in the execution of a program’s functionality. This implies

the removal of data for which the access is denied.

To obtain a better behavior in terms of time and performance we suppose that:

www.jmeds.eu

125

1. Database information that refers to authorization module will be properly processed

and cached.

2. Some tables will be populated at design time.

The steps in integration and usage of authorization module in the application are:

1. Establishing the methods for which is desired to restrict the access. For each method

is assigned certain functionality. The methods will be accessed using application’s

GUI – menu, buttons or other controls.

2. The functionalities are included in the appropriate table – “functionality” table.

3. The association between functionalities and methods is saved in a file, eventually xml

file. In other words, we mark that some methods represent certain functionalities

even if not all the methods will have assigned one but will be used by other methods

which represents functionalities.

4. For each method call it is verified if it has a functionality associated. In the

affirmative case, the access right to that functionality is validated.

5. The authorization issues will be disjoined by the core of the functionality. Therefore,

besides the Business Logic method, we’ll introduce two more methods, one for the

input data constraints and second for the output data constraints. The first method

will be a standard one and implies loading and interpreting the input data

constraints. It can be implemented using a rule engine or classical if-then

statements. If the conditions are obeyed, the access to the functionality will be

granted. The second method will be more flexible because it implies some processing

work on SQL to inject some extra clauses. The purpose of this method is to filter the

sensitive data from the returned set of data and by this the access to date will be

restricted. The programmer will develop methods considering the possible use-case

scenarios. The authorization module API will deliver only the constraints on output

data for the specific functionality.

6. The authorization layer for the method call will identify the method as functionality

and will validate if it is associated with access methods for input/output data. If the

method uses input data the authorization layer will establish if the access is granted.

If the method implies output data, then the authorization layer will create an

interrogation based on constraints and then the method will be executed.

The overhead introduced by this module will be minimal, because the usage of the

caching and optimization mechanism will ensure that no access to databases or file

systems is required, and all the processing will be in the internal memory.

7. Conclusions

The purpose of this article is to describe relevant aspects of a possible implementation of

RBAC in an application which works with sensitive information and needs both access to

functionalities and granular access to data. The filtering is applied both at input data

level and output data level. The optimization of application’s performance is made also

by caching data in tuned data structures. The security architecture is based on RBAC

data model which was also briefed in the article.

A preliminary draft of this paper was presented the SECITC 2008 International

Conference.

References

[1] D.F. Ferraiolo and D.R. Kuhn (1992) "Role Based Access Control" 15th National

Computer Security Conference, Oct, 1992

[2] R. Sandhu, D.F. Ferraiolo, D, R. Kuhn "The NIST Model for Role Based Access

Control: Towards a Unified Standard", NIST, 2000

Journal of Mobile, Embedded and Distributed Systems, vol. I, no. 2, 2009

ISSN 2067 – 4074

126

[3] D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli, “Role Based Access Control” (book),

Artech House, 2003, 2nd Edition, 2007

[4] D.R. Kuhn, "Mutual Exclusion of Roles as a Means of Implementing Separation of

Duty in Role-Based Access Control Systems" Second ACM Workshop on Role-Based

Access Control, 1997

[5] D.F. Ferraiolo, J. Barkley, D.R. Kuhn, "A Role Based Access Control Model and

Reference Implementation within a Corporate Intranet", ACM Transactions on

Information Systems Security, Volume 1, Number 2, February 1999.

[6] Beznosov, Deng, Blakley, Burt, Barkley, "A Resource Access Decision Service for

CORBA-based Distributed Systems", ACSAC (Annual Computer Security Applications

Conference), 1999

[7] R. Sandhu, D. Ferraiolo, R. Kuhn, "The NIST Model for Role Based Access Control:

Towards a Unified Standard," Proceedings, 5th ACM Workshop on Role Based Access

Control, July 26-27, 2000.

[8] R.Chandramouli, "Specification and Validation of Enterprise Access Control Data for

Conformance to Model and Policy Constraints", 7th World Multi-conference on

Systemics, Cybernetics and Informatics, 2003

[9] R. Constantinescu, A. Barbulescu, "Systems Security through Capability Models",

"Competitiviness and European Integration" International Conference, Cluj,

Romania, Oct, 2007

[10] R. Constantinescu, F. Nastase, "Process Models for Security Architectures",

Informatics in Economy Journal, no. 4, 2006

[11] R. Constantinescu, I. Ilie-Nemedi, "eBusiness Security" poster session, 12th Intel

EMEA Academic Forum, Budapest, 12-14 June 2007

[12] Department of Defense Standard, "Trusted Computer System Evaluation Criteria",

1985

[13] R. Sandhu, E. Coyne, H. Feinstein, "Role Based Acces Control Models“, IEEE

Computer, 1995

